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Abstract The implications of the Pauli exclusion principle for the entropy/informa-
tion indices of the chemical bond formulated within the communication theory
approach are explored. The spatial information channels in the local, two-electron
resolution are derived for the singlet and triplet states of two electrons, modeling the
chemical bonding and non-bonding states in a molecule, respectively. Their average
conditional-entropy (covalency) and mutual-information (ionicity) descriptors are
compared against those characterizing the separate atoms and an upper-bound to the
information-theoretic bond-order for the molecular orbital “events” is determined.
An illustrative application to AO channels in H2 generates numerical values of the
information-theoretic indices for this prototype covalent bond. The molecular informa-
tion systems are interpreted as the ensemble averages of the elementary deterministic
(zero-covalency) information networks. Examples of such a channel synthesis include
model binary channels and that representing the elementary valence-bond (VB) cova-
lent structure in H2. The ensemble representation of the spin channel for the triplet
state of two electrons, averaged over the three spin-projection components, offers an
entropic perspective on the spin-pairing in the bond-formation process. The spin-paired
(singlet) communication system is obtained by maximizing in the ensemble-average
communication system of the triplet state the information-flow (ionicity) to its capacity
level.
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1 Introduction

The information theory (IT) [1–4] has been recently applied to several issues in the
theory of electronic structure [5]. In particular, the communication theory of the chem-
ical bond has been developed in atomic resolution, for both the molecular system
as a whole and its constituent fragments [5–16]. In this approach the molecule is
interpreted as an information channel in which the molecular or “promolecular” input
atomic probabilities are propagated (“scattered”) via the network of chemical bonds
connecting the system constituent atoms. The bond entropy-covalency (conditional
entropy) descriptor of such a molecular probability network measures its average
communication “noise”, which reflects the extra “disorder” (indeterminacy) gener-
ated in the electron probabilities due to a delocalization in the molecule. The stronger
is the probability scattering from a given atomic “input” among all atomic “outputs”,
i.e., the higher the degree of the electron sharing between the system constituent atoms,
the stronger the system “noise” level and its bond covalency. The overall information-
ionicity (mutual-information) index of all bonds in the molecule then measures the
amount of information flowing through such a molecular information network [5],
from the promolecular input to the molecular output, thus emphasizing the “order”
(determinacy) in the molecular probability scattering.

Therefore, in this probabilistic model the covalent component reflects the delo-
calization aspect of the system valence electrons, via the network of all chemical
bonds generated by the occupied molecular orbitals (MO), while the ionic component
describes the complementary localization facet of the molecular electronic structure.
This IT description explains the information origins of the chemical bond and it
accounts in a dichotomous way for the intuitively expected competition between the
covalent and ionic components of the chemical bond. The theory extensions into the
orbital and local descriptions have also been proposed [17–21].

The spatial probability distributions of electrons reflect the intervention of the Pauli
exclusion principle, which gives rise to the exchange correlation between spin-like
electrons. In the present work we shall examine some of its manifestations by exploring
the local information channels of two electrons in the model molecular singlet and
triplet states, respectively, and by comparing the resulting estimates of the average
(global) entropy/information indices against those describing the reference state of
two non-bonded (separate) atoms.

The ensemble-average representation of the covalent communication systems,
recently introduced within the communication theory perspective on the valence-bond
(VB) theory [22], will be used to synthesize the molecular channels from the elemen-
tary channels, for which the conditional-entropy index identically vanishes, thus re-
solving the noisy (covalent) channels in terms of the elementary deterministic (ionic)
information networks. The illustrative examples of such a synthesis/resolution will be
given, related to the binary channels, spatial covalent VB structure, and the average
spin-channel of two electrons in the triplet sate [5]. The latter application admits an
ensemble interpretation of the spin-pairing in the covalent chemical bond.

In what follows the entropic quantities are measured in bits, which correspond to
the base 2 of the logarithmic measure of information [2]. The bold symbol X denotes
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the square or rectangular matrix, the bold-italic X stands for a row vector, while italic
X corresponds to a scalar quantity.

2 Spatial singlet and triplet MO-channels and their entropy/information
descriptors

Let us examine the two-electron information systems in local resolution implied by
the general spatial parts �S(1, 2) = 2−1/2[ϕ(1)ψ(2) + ϕ(2)ψ(1)] and �T (1, 2) =
2−1/2[ϕ(1)ψ(2)− ϕ(2)ψ(1)] of the molecular singlet �S(1, 2) = �S(1, 2)�S

0 (1, 2)
and triplet �T (1, 2; M) = �T (1, 2)�T

M (1, 2) states of two electrons occupying the
specified pair of the (real) orthonormal MO, ϕ and ψ . They generate the associated
probability distributions pϕ(r) = ϕ2(r) and pψ(r) = ψ2(r), as well as their overlap
distribution g(r) = ϕ(r)ψ(r). In accordance with Pauli’s requirement of the overall
anti-symmetric character of the two-fermion wave-function the corresponding spin
functions of two electrons, �S

0 (1, 2) and {�T
M (1, 2),M = −1, 0, 1}, for the overall

spin projection Mh̄, are anti-symmetric and symmetric with respect to exchanging the
identity of two electrons, respectively.

The singlet two-electron distribution,

P S(1, 2) = |�S(1, 2)|2

= 1

2

{
pϕ(1)pψ(2)+ pϕ(2)pψ(1)+ 2g(1)g(2)

}
,

∫ ∫
P S(1, 2)dr1dr2 = 1, (1)

partly integrates to the molecular one-electron input [P S(1)] and output[P S(2)] den-
sities, respectively,

∫
P S(1, 2)dr2 ≡ P S(1) = 1

2

[
pϕ(1)+ pψ(1)

]
and

∫
P S(1, 2)dr1 = P S(2) = 1

2

[
pψ(2)+ pϕ(2)

]
. (2)

In the last equation we have observed that the orthogonality of two MO, 〈ϕ|ψ〉 = 0,
implies that

∫
g(r)dr = 0.

By convention [21], the local MO-events of electron 1, A(1) = {ϕ(1), ψ(1)},
determine the input in the molecular information system, with the molecular input
probabilities P S[ϕ(1)] = 1

2 pϕ(1) and P S[ψ(1)] = 1
2 pψ(1), respectively (see Fig. 1).

Similarly, the local MO-events of electron 2, B(2) = {ϕ(2), ψ(2)}, define the output
in the molecular information channel, as also indicated in the schematic diagram of
Fig. 1.

The two admissible variants of the molecular singlet channel shown in this figure
correspond to alternative limiting interpretations of the MO overlap density term in
P S(1, 2). More specifically, in the maximum-covalency interpretation of panel a it
is equally attributed to the two diagonal probability propagations ϕ(1) → ϕ(2) and
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Fig. 1 The maximum covalency (panel a) and ionicity (panel b) local information channels of two electrons
in the spatial singlet state

ψ(1) → ψ(2), and in the maximum-ionicity interpretation of panel b it is equally as-
cribed as the correction to the two cross (off-diagonal) scatterings ϕ(1) → ψ(2) and
ψ(1) → ϕ(2). The former case gives rise to a more “noisy” (IT-covalent) information
channel, while the latter represents a more deterministic (IT-ionic) probability propa-
gation in the molecule. Their associated conditional entropy and mutual-information
descriptors, mark the upper bounds of the delocalization-covalency and localization-
ionicity, respectively, available in this local singlet channel.

The triplet spatial function �T (1, 2) expressed in terms of MO generates the two-
electron distribution of the simultaneous local input-output events,

PT (1, 2) = |�T (1, 2)|2

= 1

2

{
pϕ(1)pψ(2)+ pϕ(2)pψ(1)− 2g(1)g(2)

}
,

∫ ∫
PT (1, 2)dr1dr2 = 1, (3)

which admits only the probability scattering in the “deterministic” channel of Fig. 2,
due to the negative character of the overlap probability correction.

The two-electron conditional-entropy density resulting from the singlet channel of
Fig. 1a reads:

SS(1, 2)max . = SS[B(2)|A(1)]max .

= −1

2

[
pψ(1)pϕ(2) log2 pϕ(2)

+ pϕ(1)pψ(2) log2 pψ(2)+ g(1)g(2) log2 g2(2)
]
. (4)
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Fig. 2 The local information channel of two electrons in the spatial triplet state

It gives the following upper-bound to the average communication noise (IT-covalency)
in the MO-singlet communication network:

〈SS〉max . = SS(B|A)max . =
∫ ∫

SS(1, 2)max . dr1dr2 = 1

2

{
H [pψ ] + H [pϕ]

}
,

(5)

where the Shannon entropy of the continuous probability distribution p(r)

H [p] = −
∫

p(r) log2 p(r)dr. (6)

Therefore, the maximum value of the communication noise in this model singlet
channel amounts to the arithmetic average of the Shannon entropies of the two MO
probability distributions.

The upper-bound of the singlet IT-ionicity is determined by a more “deterministic”
channel of Fig. 1b. Let us denote the two cross-over conditional probabilities of this
information system by

p̄ψ(2) = pψ(2)+ ψ(1)

ϕ(1)
g(2) and p̄ϕ(2) = pϕ(2)+ ϕ(1)

ψ(1)
g(2). (7)

In terms of these modified MO probabilities the maximum of the two-electron mutual-
information density in this model singlet state of two electrons becomes:

I S(1, 2)max . = I S[A(1) : B(2)]max .

= P S(1, 2)− 1/2 p̄ψ(2)pϕ(1) log2 pϕ(1)

−1

2
p̄ϕ(2)pψ(1) log2 pψ(1). (8)

Taking into account the MO orthogonality, which implies

∫
p̄ϕ(2)dr2 =

∫
pϕ(2)dr2 =

∫
p̄ψ(2)dr2 =

∫
pψ(2)dr2 = 1, (9)

one thus obtains the maximum average IT-ionicity in the model singlet channel:
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Fig. 3 The spatial two-electron (triplet) channel in the separate-atom (dissociation) limit A0 + B0

〈I S〉max . = I S(A : B)max .

=
∫ ∫

I S(1, 2)max . dr1dr2

= 1 + 1

2

{
H [pψ ] + H [pϕ]

} = 1 + 〈SS〉max . (10)

Hence, Eqs. 5 and 10 give the corresponding maximum estimate of the total bond
index of the MO-channel:

〈N S〉max . = N S(A; B)max . = 〈SS〉max + 〈I S〉max . = 1 + H [pψ ] + H [pϕ]. (11)

Now, let us briefly examine the reference dissociation channel, in which the two (spin-
like, indistinguishable) electrons occupy singly the two Atomic Orbitals (AO) a0 and
b0 originating from the separate (free) atoms A0 and B0, respectively, which generate
the probability distributions p0

a(r) = [a0(r)]2 and p0
b(r) = [b0(r)]2. This separate-

atom channel is shown in Fig. 3. It results from the corresponding (anti-symmetric)
wave-function,

�0
T (1, 2) = |a0b0| = 2−1/2[a0(1)b0(2)− a0(2)b0(1)], (12)

and the associated two-electron distribution for these non-overlapping atoms:

P0
T (1, 2) = |�0

T (1, 2)|2

= 1

2

[
p0

a(1)p
0
b(2)+ p0

a(2)p
0
b(1)

]
,

∫ ∫
P0

T (1, 2)dr1dr2 = 1. (13)

The following average bond indices describe this truly non-bonding limit:

〈S0
T 〉 = ST (B0|A0) = 1

2

{
H [p0

a] + H [p0
b]

}
,

〈I 0
T 〉 = I T (A0 : B0) = 1 + 1

2

{
H [p0

a] + H [p0
b]

}
,

〈N 0
T 〉 = N T (A0; B0) = 1 + H [p0

a] + H [p0
b]. (14)
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3 Bond indices of illustrative AO-channels in H2

In this section we examine the two-electron information systems in local resolution
of the AO events, which are implied by the bonding (singlet), ground-state and the
non-bonding (triplet), singly-excited) state of two electrons in the simplest, two-orbital
model of the covalent chemical bond in H2 ≡ A–B. We shall also estimate their as-
sociated integral entropy/information descriptors. In this minimum basis set descrip-
tion the two hydrogen atoms contribute a single electron each, initially occupying
the two (mutually orthogonalized) 1s atomic orbitals (OAO) centered on two nuclei,
χ(r) = {a(r) ∈ A, b(r) ∈ B}, which generate the respective atomic probability distri-
butions: {pa(r) = a2(r), pb(r) = b2(r)}. These basis functions give rise to the bonding
and antibonding MO: ϕ+ = 2−1/2(a + b) and ϕ− = 2−1/2(a − b), respectively, in
terms of which

�S(1, 2) = ϕ+(1)ϕ+(2) = 2−1/2[�cov.(1, 2)+�ion(1, 2)],
�cov.(1, 2) = 2−1/2[a(1)b(2)+ b(1)a(2)],
�ion(1, 2) = 2−1/2[b(1)b(2)+ a(1)a(2)];
�T (1, 2) = 2−1/2[ϕ+(1)ϕ−(2)− ϕ+(2)ϕ−(1)] ≡ |ϕ+ϕ−| = |ab|; (15)

here the two-electron basis functions �cov.(1, 2) and �ion(1, 2) denote the familiar
covalent and ionic VB-structures. The final equality between the two spatial Slater
determinants determining �T (1, 2) follows from the fact that the singly-occupied
MO are physically equivalent to the singly occupied OAO, thus generating the same
wave-function.

The singlet spatial function determines the associated two-electron distribution:

PS(1, 2) = |�S(1, 2)|2 = 1

4
[ p̄a(1)+ p̄b(1)] [ p̄a(2)+ p̄b(2)]

= 1

4
[ p̄a(1) p̄a(2)+ p̄a(1) p̄b(2)+ p̄b(1) p̄a(2)+ p̄b(1) p̄b(2)]

≡ {P[a(1), a(2)] + P[a(1), b(2)] + P[b(1), a(2)]
+ P[b(1), b(2)]}, (16)

where the molecularly modified probability distributions of bonded atoms

p̄x (r) = px (r)+ a(r)b(r) ≡ px (r)+ c(r), x = a, b. (17)

In the last line of Eq. 16 we have interpreted the four contributions as corresponding
probabilities of the simultaneous OAO events of two electrons. Their partial integra-
tions over coordinates of the single electron give rise to the molecular probabilities
P(1) = {P[a(1)], P[b(1)]} of the “input” events A(1) = {a(1), b(1)} and the molecu-
lar probabilities P(2) = {P[a(2)], P[b(2)]} of the output events B(2) = {a(2), b(2)},
respectively:
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Fig. 4 The spatial two-electron singlet channel in H2

∫
PS(1, 2)dr2 = 1

2
[ p̄a(1)+ p̄b(1)] = pS[a(1)] + pS[b(1)] = pS(1),

∫
PS(1, 2)dr1 = 1

2
[ p̄a(2)+ p̄b(2)] = pS[a(2)] + pS[b(2)] = pS(2). (18)

Hence the molecular conditional probabilities of the molecular output, given the
molecular input:

P[B(2)|A(1)] =
{

P[y(2)|x(1)]
= P[x(1), y(2)]/p[x(1)] = p[y(2)]
= 1

2
p̄y(2), x, y = a, b

}
. (19)

These probabilities define the two-electron communication system of the local AO-
events shown in Fig. 4. Its conditional-entropy density reads:

SS[B(2)|A(1)] = SS(1, 2) = −
∑

x

∑

y
pS[x(1)]pS[y(2)] log2 pS[y(2)]

= −pS(1)
∑

y
pS[y(2)] log2 pS[y(2)] ≡ pS(1)

∑

y
h[y(2)]

= pS(1){pS(2)− 1

2

∑

y
p̄y(2) log2 p̄y(2)} ≡ pS(1){pS(2)

−1

2

∑

y
h[ȳ(2)]}. (20)

Integrating over positions of two electrons then gives the corresponding average
conditional-entropy in the system ground-state:

SS =
∫ ∫

SS(1, 2)dr1dr2

= 1 + 1

2

∑

y
H [ p̄y], (21)

where the Shannon entropy

H [ p̄y] =
∫

h[ȳ(r)]dr

= −
∫

p̄y(r) log2 p̄y(r)dr. (22)
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The probability distribution of the bonded-atom (Eq. 3) should strongly resemble that
of the Hirshfeld [5,23–25] (“stockholder”) Atoms-in-Molecules (AIM), p̄y ∼= pH

y , for
which H [pH

y ] = 3.8 [5,25], and hence SS ∼= 4.8.
Let us now examine the two-electron mutual-information density of the communi-

cation channel of Fig. 4,

IS[A(1) : B(2)] = IS(1, 2)

=
∑

x

∑

y
pS[x(1)]pS[y(2)] log2{pS[y(2)]/(pS[y(2)]pS(1))}

= −pS(2)pS(1) log2 pS(1), (23)

which gives rise to the average IT-ionicity index

IS =
∫ ∫

IS(1, 2)dr1dr2 = H [pS]. (24)

This index can be also estimated using the previously reported molecular one-electron
entropyH [ρ] = 6.6 [5,25], where ρ = 2pS stands for the molecular ground-state
density: H [pS] = 1

2 H [ρ] + 1 = 4.3 bits. These local-resolution estimates for the
Hirshfeld AIM thus predict the overall bond index in H2 : NS = SS + IS = 9.1.

It is of interest to compare these bonding-state predictions with the corresponding
descriptors of the molecular non-bonding (triplet) state of Eq. 15 and the promole-
cular reference state �0

T (1, 2) = |a0b0| of two indistinguishable electrons occupy-
ing the non-overlapping, separated-atom orbitals χ0(r)= {a0(r), b0(r)}, giving rise
to the atomic probability densities {p0

a(r), p0
b(r)}, at large internuclear distances

of the Separated-Atom-Limit (SAL), when the differential overlap vanishes:
c0(r)= a0(r)b0(r)= 0. This wave-function determines the two-electron information
channel shown in Fig. 3. Its average conditional-entropy (IT-covalency) index
S0

T ≡ 〈S0
T 〉= H0 = 1

2

∑
x H [p0

x ] = 4.2 and the complementary mutual-information
(IT-ionicity) index I 0

T ≡ 〈I 0
T 〉= 1 + H0 = 5.2 [5,25] thus generate the overall in-

dex N 0
T ≡ 〈N 0

T 〉= S0
T + I 0

T = 9.4. Therefore, in the local AO-resolution the bonding
(singlet) state generates an increased value of the average two-electron covalency (elec-
tron delocalization) and decreased level of the average two-electron ionicity (electron
localization), relative to the reference, non-bonding state of the two separated atoms.
The molecular channel thus becomes somewhat more “noisy” (less deterministic)
compared to the dissociation limit as a result of forming the chemical bond.

The molecular Slater determinant �T(1, 2) = |ab| involves the non-vanishing
differential overlap c(r) �= 0, which determines the effective exchange “holes” ha

x (2 |1)
and hb

x (2 |1) around the reference electron 1 in the two-electron probability density
for the triplet state:

PT (1, 2) = |�T (1, 2)|2 = 1

2
[pa(1)pb(2)+ pb(1)pa(2)− 2c(1)c(2)]

= 1

2
{[pa(1)pb(2)− c(1)c(2)] + [pb(1)pa(2)− c(1)c(2)]}
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Fig. 5 The spatial two-electron triplet channel in H2

≡ 1

2

{
pa(1)[pb(2)+ hb

x (2 |1)] + pb(1)[pa(2)+ ha
x (2 |1)]

}

≡ 1

2

{
pa(1) p̃b(2 |1)+ pb(1) p̃a(2 |1)}. (25)

We further observe that, due to the orthonormality of OAO,

∫
p̃b(2 |1)dr2 =

∫
pb(2)dr2 =

∫
p̃a(2 |1)dr2 =

∫
pa(2)dr2 =1. (26)

The distribution of Eq. 25 determines the communication system of Fig. 5. It gener-
ates the associated IT-ionicity density IT (1, 2) = PT (1, 2)− 1

2

∑
x p0

x (1) log2 p0
x (1)

and hence the average mutual-information index IT = 1 + 1
2

∑
x H [p0

x ] = 5.2 bits.
The atomic electron distributions in the molecular triplet state are those characteriz-
ing the OAO of the free atoms at molecular positions, which determine the system
promolecule [23]. Therefore, the probability densities (pa, pb) are already partly de-
localized compared to (p0

a, p0
b), thus being close to the Hirshfeld AIM distributions

(pH
a , pH

b ). Therefore, interpreting the triplet channel as the promolecular channel
consisting of two mutually-closed Hirshfeld atoms gives ST ∼= 1

2

∑
x H [pH

x ] = 3.8
[5,25]. Such an assumption correctly recovers the mutual-information (IT-ionicity)
index IT = I 0

T = 1+ H0 = 5.2 thus generating the overall index NT = ST + IT ∼= 9.
To summarize, although both molecular states slightly diminish the initial, “pro-

molecular” bond index N 0 = 9.4, N S = 9.1 ∼= N T = 9, a manifestation of an effective
contraction of the AIM distributions, they are seen to roughly conserve it at about 9
bits value. The bonding (singlet) channel exhibits an increased level of the average
communication noise and a diminished flow of information, relative to SAL-estimates,
while the opposite trends are detected in the non-bonding (triplet) channel, which in
fact describes the promolecular reference state.

It should be stressed, that these AO-channels differ from the MO-channels discussed
in Sect. 2, since the two approaches differ in their choices of the input/output “events”.
Since in the singlet (bonding) state the two electrons occupy the bonding MO ϕ =
ψ = ϕ+, its probability distribution is given by the “shape” factor of the molecular
electron density: p = (ϕ+)2 = ρ

2 . One can therefore use the previously reported
[5,25] value of H [ρ] = 6.6 to estimate

H [p] = 1

2
H [ρ] + 1 = 4.3, (27)

123



786 J Math Chem (2009) 45:776–789

and hence also the bounds of Eqs. 5, 10, and 11,

〈SS〉max = 4.3, 〈I S〉max = 5.3, 〈N S〉max . = 9.6, (28)

which correspond to the two-electron MO-channels. A comparison of the total index
with those estimated from the local AO-channels shows that both approaches predict
roughly 9 bits of the total bond index, with the AO events generating a slightly higher
value of the entropy covalency.

4 Ensemble-average channels of deterministic components

A straightforward superposition of probabilities implies that any non-deterministic
(covalent) communication channel, exhibiting a finite conditional entropy (noise, co-
valency) component, can be expressed as the ensemble average of the relevant de-
terministic channels, in which only the mutual-information (information-flow, ionic)
descriptor does not vanish. Consider as an illustration of this classical rule the bi-
nary channels (BC) of Fig. 6, either symmetric (SBC, panel a), defined by a single
crossover conditional probability ω, or non-symmetric (NBC, panel b), in which two
such parameters are required to fully determine the communication network between
the system input A = (a1, a2) and output B = (b1, b2) events, described by the condi-
tional probabilities of the output given input, P(B|A) = {P(b j |ai ) ≡ P( j |i)}. For any
given input they satisfy the usual normalization:

∑
j P( j |i) = 1. In the proper com-

munication system, as opposed to its deterministic components, the input and output

A   B 

    x  a1     1−ω b1          x(1−ω) + (1−x)ω ≡ 1−z   a) SBC
ω

NSBC = H(z)
ω

1−x  a2      1−ω b2                 xω + (1−x)(1−ω) ≡ z

SSBC = −ωlog2ω − (1−ω)log2(1−ω) ≡ H(ω) = SSBC(B|A)              ISBC = H(z) − H(ω) = ISBC(A:B)

---------------------------------------------------------------------------------------------------------------------

A   B

    y  a1     1−ω b1         y(1−ω) + (1−y)ε ≡ 1−r     b) NBC
ω

NNBC = H(r)
       ε

1−y  a2      1−ε b2                 yω + (1−y)(1−ε) ≡ r

SNBC = yH(ω) + (1−y)H(ε) = SNBC(B|A)    INBC = H(r) − SNBC = INBC(A:B)

Fig. 6 Examples of binary information systems consisting of two inputs and outputs: the symmetric binary
channel (SBC) defined by a single independent conditional cross-over probability P(b2|a1) = P(b1|a2) =
ω (panel a) and a general non-symmetric binary channel (NBC) exhibiting different cross-over probabilities
P(b2|a1) = ω and P(b1|a2) = ε. Relevant expressions for the entropy/information bond descriptors (in
bits), including the conditional-entropy S(IT-covalency), mutual-information I (IT-ionicity), and total bond
index N = S + I , are also reported
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probabilities, P(A) = {P(ai ) ≡ P(i)} and P(B) = {P(b j ) ≡ P( j)}, respectively,
are also assumed to be normalized:

∑
i P(i) = ∑

j P( j) = 1.
The elementary deterministic channels for representing the SBC are shown in

Fig. 7a, while Fig. 7b presents a related resolution of the NBC of Fig. 6. In Figs 8
and 9 two particular applications of such an ensemble partition are presented. In Fig. 8
the elementary deterministic channels of panels a and b, representing the ionic and

 x      a1     1       b1          x   a) SBC
       [I]
   1−x       a2      1          b2       1−x

   [SBC] = (1 − ω) [I] + ω [II] ≡ ][][ IIPIP SBC
II

SBC
I +

 x      a1   1         b1          1−x
       [II]
   1−x       a2     1            b2 x

---------------------------------------------------------------------------------------------------------------------

 y      a1     1       b1          y     [I] b) NBC

          
   1−y       a2      1          b2       1−y [II]

   [NBC] = (1 − ω) [I] + ω [II] + (1 − ε)[III] + ε [IV]
≡ ] [][][][ IVPIIIPIIPIP NBC

IV
NBC

III
NBC

II
NBC

I +++

[III] x      a1   1         b1          x [IV]

   1−x       a2     1            b2       1−x

Fig. 7 Ensemble-average resolutions of the binary channels of Fig. 6 into the relevant elementary deter-
ministic channels {[α]}, with the appropriate probability weights {P BC

α } : [BC] = ∑
α P BC

α [α]

½ a0
         a   ½ a)  Ionic: [a+b−] + [a−b+] ≡ [a---b]
1      Φion(1,2) = 2−1/2[b(1)b(2) +a(1)a(2)] 

Sion.= 0,  Iion.= Nion.= 1 
1

½ b0
        b ½

---------------------------------------------------------------------------------------------------------------------

         ½           a0
           1   a

0    ½ b)  Nonbonding (SAL): [a0|b0]
Spm. = 0,  Ipm. = Npm. = 1 

½           b0
           1   b

0    ½

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

½ a0
        ½ a   ½ c) Covalent: [a⎯b] = ½{[a---b]+[a0|b0]}
½      Φcov.(1,2) = 2−1/2[a(1)b(2) + b(1)a(2)] 

Scov. = Ncov. = 1, Icov. = 0
½

½ b0
         ½   b ½

Fig. 8 The independent (deterministic) communication channels for the elementary ionic and non-bonding
(SAL) structures in the homonuclear-diatomic A1 − A2 ≡ a − b, and the dependent (scattering) channel
[a–b] for the covalent structure expressed as the ensemble average of the ionic and non bonding channels

with equal probability-weights: [a—b] = 1
2

{
[a- - -b] + [a0|b0]

}
. The conditional-entropy S (IT-covalency),

mutual-information I (IT-ionicity), and total N = S + I bond indices (in bits) for each channel are
also reported for equal input probabilities P(a0) = P(b0) = 1

2 giving rise to equal output probabilities

P(a) = P(b) = 1
2
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Fig. 9 The deterministic spin channels of two electrons (panels a and b) for their singlet and triplet states
and the ensemble average triplet communication channel (panel c) : 1

3 [M = 0] + 2
3 [M = ±1]. The

corresponding bond indices for each channel are also reported for the equal input probabilities P[α(1)] =
P[β(1)] = 1

2 giving rise to equal output probabilities P[α(2)] = P[β(2)] = 1
2

non-bonding (SAL) valence bond (VB) structures of a homonuclear diatomic, are used
to construct the associated information system corresponding to the covalent structure
of panel c. Recently, such elementary diatomic channels have been used to gener-
ate the communication systems of the VB structures in the polyatomic π -electron
systems [26]. Figure 9 reports how the average spin channel for the triplet state of
two electrons (panel c) can be decomposed in terms of the elementary deterministic
triplet channels [M] for the overall spin projection measured by the resultant quantum
number M = 0, ±1, respectively. As a result of the ensemble mixing of the purely
IT-ionic elementary channels [see the associated mutual-information (information-
flow) indices I ≡ I (A : B)] the IT-covalency is generated in the average channels, as
explicitly reflected by the reported conditional-entropy (communication noise) indices
S ≡ S(B|A).

It follows from Fig. 9 that the spin-pairing, e.g., that accompanying a formation of
the covalent chemical bond A–B, when the spatial factor �cov.(1, 2) is accompanied
by the singlet spin function�S(1, 2) giving rise to the information channel of Fig. 9a,
involves a complete transformation of the average spin-covalency ST = 0.92 present
in the average triplet spin channel 9c into the same amount of spin-ionicity, so that
in the purely ionic, deterministic singlet channel of Fig. 9a, only 1 bit of the spin-
ionicity remains. This signifies that no information is dissipated in the form of the
communication noise in this channel.

This offers the IT perspective on the spin-pairing in the bond-formation process,
which amounts to a removal of the contribution from the [M = ±1] channel in the
ensemble average triplet channel. Clearly, by the Hund’s rule, the triplet spin state is
favored energetically, so that spin pairing in the covalent VB structure 8c can have
only an entropic origin. As we have already argued above, the singlet communication
system is obtained by maximizing the information-flow in the ensemble average triplet
channel to the channel capacity level of I = 1.
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